Formation of apatite oxynitrides by the reaction between apatite-type oxide ion conductors, La{sub 8+x}Sr{sub 2-x}(Si/Ge){sub 6}O{sub 26+x/2}, and ammonia

Following growing interest in the use of ammonia as a fuel in solid oxide fuel cells (SOFCs), we have investigated the possible reaction between the apatite silicate/germanate electrolytes, La{sub 8+x}Sr{sub 2-x}(Si/Ge){sub 6}O{sub 26+x/2,} and NH{sub 3} gas. We examine how the composition of the ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state chemistry 2009-12, Vol.182 (12)
Hauptverfasser: Orera, A., Headspith, D., Apperley, D.C., Francesconi, M.G., Slater, P.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following growing interest in the use of ammonia as a fuel in solid oxide fuel cells (SOFCs), we have investigated the possible reaction between the apatite silicate/germanate electrolytes, La{sub 8+x}Sr{sub 2-x}(Si/Ge){sub 6}O{sub 26+x/2,} and NH{sub 3} gas. We examine how the composition of the apatite phase affects the reaction with ammonia. For the silicate series, the results showed a small degree of N incorporation at 600 deg. C, while at higher temperatures (800 deg. C), substantial N incorporation was observed. For the germanate series, partial decomposition was observed after heating in ammonia at 800 deg. C, while at the lower temperature (600 deg. C), significant N incorporation was observed. For both series, the N content in the resulting apatite oxynitride was shown to increase with increasing interstitial oxide ion content (x/2) in the starting oxide. The results suggest that the driving force for the nitridation process is to remove the interstitial anion content, such that for the silicates the total anion (O+N) content in the oxynitrides approximates to 26.0, the value for an anion stoichiometric apatite. For the germanates, lower total anion contents are observed in some cases, consistent with the ability of the germanates to accommodate anion vacancies. The removal of the mobile interstitial oxide ions on nitridation suggests problems with the use of apatite-type electrolytes in SOFCs utilising NH{sub 3} at elevated temperatures. - Graphical abstract: In this paper we show that heating the apatite-type electrolytes La{sub 8+x}Sr{sub 2-x}(Si/Ge){sub 6}O{sub 26+x/2} in NH{sub 3} at high temperatures leads to nitridation of the electrolyte, with the level of nitridation increasing with increasing x.
ISSN:0022-4596
1095-726X
DOI:10.1016/j.jssc.2009.09.029