Anisotropic Transport of Electrons in a Novel FET Channel with Chains of InGaAs Nano-Islands Embedded along Quasi-Periodic Multi-Atomic Steps on Vicinal (111)B GaAs
We have studied electron transport in n-AlGaAs/GaAs heterojunction FET channels, in which chains of InGaAs nano-islands are embedded along quasi-periodic steps. By using two samples, conductance G{sub para}(V{sub g}) parallel to the steps and G{sub perp}(V{sub g}) perpendicular to them were measured...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have studied electron transport in n-AlGaAs/GaAs heterojunction FET channels, in which chains of InGaAs nano-islands are embedded along quasi-periodic steps. By using two samples, conductance G{sub para}(V{sub g}) parallel to the steps and G{sub perp}(V{sub g}) perpendicular to them were measured at 80 K as functions of gate voltage V{sub g}. At sufficiently high V{sub g}, G{sub para} at 80 K is several times as high as G{sub perp}, which manifests the anisotropic two-dimensional transport of electrons. When V{sub g} is reduced to -0.7 V, G{sub perp} almost vanishes, while {sub Gpara} stays sizable unless V{sub g} is set below -0.8 V. These results indicate that 'inter-chain' barriers play stronger roles than 'intra-chain' barriers. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.3295401 |