Unveiling the Nature of M94's (NGC4736) Outer Region: A Panchromatic Perspective

We have conducted a deep multiwavelength analysis (0.15-160 Delta *mm) to study the outer region of the nearby galaxy M94. We show that the non-optical data support the idea that the outskirts of this galaxy are not formed by a closed stellar ring (as traditionally claimed in the literature) but by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2009-10, Vol.704 (1), p.618-628
Hauptverfasser: Trujillo, Ignacio, Martinez-Valpuesta, Inma, Martínez-Delgado, David, Peñarrubia, Jorge, Gabany, R. Jay, Pohlen, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have conducted a deep multiwavelength analysis (0.15-160 Delta *mm) to study the outer region of the nearby galaxy M94. We show that the non-optical data support the idea that the outskirts of this galaxy are not formed by a closed stellar ring (as traditionally claimed in the literature) but by a spiral arm structure. In this sense, M94 is a good example of a Type III (anti-truncated) disk galaxy having a very bright outer disk. The outer disk of this galaxy contains ~23% of the total stellar mass budget of the galaxy and contributes ~10% of the new stars created showing that this region of the galaxy is active. In fact, the specific star formation rate (SFR) of the outer disk (~0.012 Gyr-1) is a factor of ~2 larger (i.e., the star formation is more efficient per unit stellar mass) than in the inner disk. We have explored different scenarios to explain the enhanced star formation in the outer disk. We find that the inner disk (if considered as an oval distortion) can dynamically create a spiral arm structure in the outer disk which triggers the observed relatively high SFR as well as an inner ring similar to what is found in this galaxy.
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/704/1/618