Dopant activation in ion implanted silicon by microwave annealing

Microwaves are used as a processing alternative for the electrical activation of ion implanted dopants and the repair of ion implant damage within silicon. Rutherford backscattering spectra demonstrate that microwave heating reduces the damage resulting from ion implantation of boron or arsenic into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2009-12, Vol.106 (11), p.114902-114902-8
Hauptverfasser: Alford, T. L., Thompson, D. C., Mayer, J. W., Theodore, N. David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microwaves are used as a processing alternative for the electrical activation of ion implanted dopants and the repair of ion implant damage within silicon. Rutherford backscattering spectra demonstrate that microwave heating reduces the damage resulting from ion implantation of boron or arsenic into silicon. Cross-section transmission electron microscopy and selective area electron diffraction patterns demonstrate that the silicon lattice regains nearly all of its crystallinity after microwave processing of arsenic implanted silicon. Sheet resistance readings indicate the time required for boron or arsenic electrical activation within implanted silicon. Hall measurements demonstrate the extent of dopant activation after microwave heating of implanted silicon. Physical and electrical characterization determined that the mechanism of recrystallization in arsenic implanted silicon is solid phase epitaxial regrowth. The boron implanted silicon samples did not result in enough lattice damage to amorphize the silicon lattice and resulted in low boron activation during microwave annealing even though recrystallization of the Si lattice damage did take place. Despite low boron activation levels, the level of boron activation in this work was higher than that expected from traditional annealing techniques. The kinetics of microwave heating and its effects on implanted Si are also discussed.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3260245