A physiologically based pharmacokinetic model for developmental exposure to BDE-47 in rats

Polybrominated diphenyl ethers (PBDEs) are used commercially as additive flame retardants and have been shown to transfer into environmental compartments, where they have the potential to bioaccumulate in wildlife and humans. Of the 209 possible PBDEs, 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology and applied pharmacology 2010-02, Vol.242 (3), p.290-298
Hauptverfasser: Emond, Claude, Raymer, James H., Studabaker, William B., Garner, C. Edwin, Birnbaum, Linda S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polybrominated diphenyl ethers (PBDEs) are used commercially as additive flame retardants and have been shown to transfer into environmental compartments, where they have the potential to bioaccumulate in wildlife and humans. Of the 209 possible PBDEs, 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) is usually the dominant congener found in human blood and milk samples. BDE-47 has been shown to have endocrine activity and produce developmental, reproductive, and neurotoxic effects. The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for BDE-47 in male and female (pregnant and non-pregnant) adult rats to facilitate investigations of developmental exposure. This model consists of eight compartments: liver, brain, adipose tissue, kidney, placenta, fetus, blood, and the rest of the body. Concentrations of BDE-47 from the literature and from maternal–fetal pharmacokinetic studies conducted at RTI International were used to parameterize and evaluate the model. The results showed that the model simulated BDE-47 tissue concentrations in adult male, maternal, and fetal compartments within the standard deviations of the experimental data. The model's ability to estimate BDE-47 concentrations in the fetus after maternal exposure will be useful to design in utero exposure/effect studies. This PBPK model is the first one designed for any PBDE pharmaco/toxicokinetic description. The next steps will be to expand this model to simulate BDE-47 pharmacokinetics and distributions across species (mice), and then extrapolate it to humans. After mouse and human model development, additional PBDE congeners will be incorporated into the model and simulated as a mixture.
ISSN:0041-008X
1096-0333
DOI:10.1016/j.taap.2009.10.019