Stability analysis and time-step limits for a Monte Carlo Compton-scattering method
A Monte Carlo method for simulating Compton scattering in high energy density applications has been presented that models the photon–electron collision kinematics exactly [E. Canfield, W.M. Howard, E.P. Liang, Inverse Comptonization by one-dimensional relativistic electrons, Astrophys. J. 323 (1987)...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2010-05, Vol.229 (10), p.3691-3705 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Monte Carlo method for simulating Compton scattering in high energy density applications has been presented that models the photon–electron collision kinematics exactly [E. Canfield, W.M. Howard, E.P. Liang, Inverse Comptonization by one-dimensional relativistic electrons, Astrophys. J. 323 (1987) 565]. However, implementing this technique typically requires an explicit evaluation of the material temperature, which can lead to unstable and oscillatory solutions. In this paper, we perform a stability analysis of this Monte Carlo method and develop two time-step limits that avoid undesirable behavior. The first time-step limit prevents instabilities, while the second, more restrictive time-step limit avoids both instabilities and nonphysical oscillations. With a set of numerical examples, we demonstrate the efficacy of these time-step limits. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2010.01.022 |