Cavity-QED models of switches for attojoule-scale nanophotonic logic
Quantum optical input-output models are described for a class of optical switches based on cavity quantum electrodynamics (QED) with a single multilevel atom (or comparable bound system of charges) coupled simultaneously to several resonant field modes. A recent limit theorem for quantum stochastic...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2009-10, Vol.80 (4), Article 045802 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum optical input-output models are described for a class of optical switches based on cavity quantum electrodynamics (QED) with a single multilevel atom (or comparable bound system of charges) coupled simultaneously to several resonant field modes. A recent limit theorem for quantum stochastic differential equations is used to show that such models converge to a simple scattering matrix in a type of strong-coupling limit that seems natural for nanophotonic systems. Numerical integration is used to show that the behavior of the prelimit model approximates that of the simple scattering matrix in a realistic regime for the physical parameters and that it is possible in the proposed cavity-QED configuration for low-power optical signals to switch higher-power signals at attojoule energy scales. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.80.045802 |