THE CLUSTER AGES EXPERIMENT (CASE). IV. ANALYSIS OF THE ECLIPSING BINARY V69 IN THE GLOBULAR CLUSTER 47 Tuc

We use photometric and spectroscopic observations of the eclipsing binary V69-47 Tuc to derive the masses, radii, and luminosities of the component stars. Based on measured systemic velocity, distance, and proper motion, the system is a member of the globular cluster 47 Tuc. The system has an orbita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2010-02, Vol.139 (2)
Hauptverfasser: Thompson, I. B., Burley, G. S., Kaluzny, J., Pych, W., Rucinski, S. M., Krzeminski, W., Dotter, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use photometric and spectroscopic observations of the eclipsing binary V69-47 Tuc to derive the masses, radii, and luminosities of the component stars. Based on measured systemic velocity, distance, and proper motion, the system is a member of the globular cluster 47 Tuc. The system has an orbital period of 29.5d and the orbit is slightly eccentric with e = 0.056. We obtain M{sub p} = 0.8762 {+-} 0.0048 M {sub sun}, R{sub p} = 1.3148 {+-} 0.0051 R {sub sun}, L{sub p} = 1.94 {+-} 0.21 L {sub sun} for the primary and M{sub s} = 0.8588 {+-} 0.0060 M {sub sun}, R{sub s} = 1.1616 {+-} 0.0062 R {sub sun}, L{sub s} = 1.53 {+-} 0.17 L {sub sun} for the secondary. These components of V69 are the first Population II stars with masses and radii derived directly and with an accuracy of better than 1%. We measure an apparent distance modulus of (m - M) {sub V} = 13.35 {+-} 0.08 to V69. We compare the absolute parameters of V69 with five sets of stellar evolution models and estimate the age of V69 using mass-luminosity-age, mass-radius-age, and turnoff mass-age relations. The masses, radii, and luminosities of the component stars are determined well enough that the measurement of ages is dominated by systematic differences between the evolutionary models, in particular, the adopted helium abundance. By comparing the observations to Dartmouth model isochrones we estimate the age of V69 to be 11.25 {+-} 0.21(random) {+-} 0.85(systematic) Gyr assuming [Fe/H] = -0.70, [{alpha}/Fe] = 0.4, and Y = 0.255. The determination of the distance to V69, and hence to 47 Tuc, can be further improved when infrared eclipse photometry is obtained for the variable.
ISSN:1538-3881
1538-3881
DOI:10.1088/0004-6256/139/2/329;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)