Effect of reentrant cone geometry on energy transport in intense laser-plasma interactions
The energy transport in cone-guided low- Z targets has been studied for laser intensities on target of 2.5x10(20) W cm(-2). Extreme ultraviolet (XUV) imaging and transverse optical shadowgraphy of the rear surfaces of slab and cone-slab targets show that the cone geometry strongly influences the obs...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-10, Vol.80 (4 Pt 2), p.045401-045401, Article 045401 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The energy transport in cone-guided low- Z targets has been studied for laser intensities on target of 2.5x10(20) W cm(-2). Extreme ultraviolet (XUV) imaging and transverse optical shadowgraphy of the rear surfaces of slab and cone-slab targets show that the cone geometry strongly influences the observed transport patterns. The XUV intensity showed an average spot size of 65+/-10 microm for slab targets. The cone slabs showed a reduced spot size of 44+/-10 microm. The shadowgraphy for the aforementioned shots demonstrate the same behavior. The transverse size of the expansion pattern was 357+/-32 microm for the slabs and reduced to 210+/-30 microm. A transport model was constructed which showed that the change in transport pattern is due to suppression of refluxing electrons in the material surrounding the cone. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.80.045401 |