Supervisor Localization: A Top-Down Approach to Distributed Control of Discrete-Event Systems
A purely distributed control paradigm is proposed for discrete-event systems (DES). In contrast to control by one or more external supervisors, distributed control aims to design built-in strategies for individual agents. First a distributed optimal nonblocking control problem is formulated. To solv...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A purely distributed control paradigm is proposed for discrete-event systems (DES). In contrast to control by one or more external supervisors, distributed control aims to design built-in strategies for individual agents. First a distributed optimal nonblocking control problem is formulated. To solve it, a top-down localization procedure is developed which systematically decomposes an external supervisor into local controllers while preserving optimality and nonblockingness. An efficient localization algorithm is provided to carry out the computation, and an automated guided vehicles (AGV) example presented for illustration. Finally, the 'easiest' and 'hardest' boundary cases of localization are discussed. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.3106490 |