Experimental studies on fast-ion transport by Alfvén wave avalanches on the National Spherical Torus Experiment

Fast-ion transport induced by Alfvén eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono et al., Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2009-05, Vol.16 (5)
Hauptverfasser: Podestà, M., Heidbrink, W. W., Liu, D., Ruskov, E., Bell, R. E., Darrow, D. S., Fredrickson, E. D., Gorelenkov, N. N., Kramer, G. J., LeBlanc, B. P., Medley, S. S., Roquemore, A. L., Crocker, N. A., Kubota, S., Yuh, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fast-ion transport induced by Alfvén eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono et al., Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.3080724