PReBeaM FOR PLANCK: A POLARIZED REGULARIZED BEAM DECONVOLUTION MAP-MAKING METHOD
We describe a maximum-likelihood regularized beam deconvolution map-making algorithm for data from high-resolution, polarization-sensitive instruments, such as the Planck data set. The resulting algorithm, which we call PReBeaM, is pixel-free and solves for the map directly in spherical harmonic spa...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal. Supplement series 2009-04, Vol.181 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a maximum-likelihood regularized beam deconvolution map-making algorithm for data from high-resolution, polarization-sensitive instruments, such as the Planck data set. The resulting algorithm, which we call PReBeaM, is pixel-free and solves for the map directly in spherical harmonic space, avoiding pixelization artifacts. While Fourier methods like ours are expected to work best when applied to smooth, large-scale asymmetric beam systematics (such as far-side lobe effects), we show that our m-truncated spherical harmonic representation of the beam results in negligible reconstruction error-even for m as small as 4 for a polarized elliptically asymmetric beam. We describe a hybrid OpenMP/MPI parallelization scheme which allows us to store and manipulate the time-ordered data from satellite instruments with a typical full-sky scanning strategy. Finally, we apply our technique to noisy data and show that it succeeds in removing visible power spectrum artifacts without generating excess noise on small scales. |
---|---|
ISSN: | 0067-0049 1538-4365 |
DOI: | 10.1088/0067-0049/181/2/533;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA) |