Finite-dimensional simple graded algebras

Let R be a finite-dimensional algebra over an algebraically closed field F graded by an arbitrary group G. In the paper it is proved that if the characteristic of F is zero or does not divide the order of any finite subgroup of G, then R is graded simple if and only if it is isomorphic to a matrix a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2008-08, Vol.199 (7)
Hauptverfasser: Bahturin, Yu A, Zaicev, M V, Sehgal, S K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a finite-dimensional algebra over an algebraically closed field F graded by an arbitrary group G. In the paper it is proved that if the characteristic of F is zero or does not divide the order of any finite subgroup of G, then R is graded simple if and only if it is isomorphic to a matrix algebra over a finite-dimensional graded skew field. Bibliography: 24 titles.
ISSN:1064-5616
1468-4802
DOI:10.1070/SM2008V199N07ABEH003949;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)