Finite-dimensional simple graded algebras
Let R be a finite-dimensional algebra over an algebraically closed field F graded by an arbitrary group G. In the paper it is proved that if the characteristic of F is zero or does not divide the order of any finite subgroup of G, then R is graded simple if and only if it is isomorphic to a matrix a...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2008-08, Vol.199 (7) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R be a finite-dimensional algebra over an algebraically closed field F graded by an arbitrary group G. In the paper it is proved that if the characteristic of F is zero or does not divide the order of any finite subgroup of G, then R is graded simple if and only if it is isomorphic to a matrix algebra over a finite-dimensional graded skew field. Bibliography: 24 titles. |
---|---|
ISSN: | 1064-5616 1468-4802 |
DOI: | 10.1070/SM2008V199N07ABEH003949;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA) |