Development of multichannel intermediate frequency system for electron cyclotron emission radiometer on KSTAR Tokamak

Plasma experiments on KSTAR are scheduled to start up this year (2008). We have developed an electron cyclotron emission (ECE) radiometer to measure the radial electron temperature profiles in KSTAR experiments. The radiometer system consists, briefly, of two downconversion stages, amplifiers, bandp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2008-10, Vol.79 (10), p.10F115-10F115-3
Hauptverfasser: Kogi, Yuichiro, Sakoda, Takuya, Mase, Atsushi, Ito, Naoki, Yokota, Yuya, Yamaguchi, Soichiro, Nagayama, Yoshio, Jeong, Seung H., Kwon, Myeun, Kawahata, Kazuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasma experiments on KSTAR are scheduled to start up this year (2008). We have developed an electron cyclotron emission (ECE) radiometer to measure the radial electron temperature profiles in KSTAR experiments. The radiometer system consists, briefly, of two downconversion stages, amplifiers, bandpass filter banks, and video detectors. These components are made commercially or developed in house. The system detects ECE power in the frequency range from 110 to 196 GHz, the detected signal being resolved by means of 48 frequency windows. Before installation of this system on KSTAR, we installed a part of this system on large helical device (LHD) to study the system under similar plasma conditions. In this experiment, the signal amplitude, considered to be proportional to the electron temperature, is measured. The time-dependent traces of the electron temperature measured by this radiometer are in good agreement with those provided by the LHD Michelson spectrometer. The system noise level which limits the minimum measurable temperature (converted to the electron temperature) is about 30 eV.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.2966380