A Langevin equation approach to electron transfer reactions in the diabatic basis

A linear Langevin equation that governs the population dynamics of electron transfer reactions is derived. The noise in the Langevin equation is eliminated by treating the diabatic population fluctuations as the relevant variables, leaving only the memory kernel responsible for the population relaxa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2008-10, Vol.129 (14), p.144502-144502
Hauptverfasser: Song, XiaoGeng, Wang, Haobin, Van Voorhis, Troy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A linear Langevin equation that governs the population dynamics of electron transfer reactions is derived. The noise in the Langevin equation is eliminated by treating the diabatic population fluctuations as the relevant variables, leaving only the memory kernel responsible for the population relaxation. Within the memory kernel, the diabatic coupling is treated perturbatively and a second order expansion is found to give a simple closed form expression for the kernel. The accuracy of the second order truncation is maximized by performing a fixed rotation of the diabatic electronic states that minimizes the first order free energy of the system and thus minimizes the effect of the perturbation on the thermodynamics. The resulting two-hop Langevin equation (THLE) is then validated by applying it to a simple spin-boson model, where exact results exist. Excellent agreement is found in a wide parameter range, even where the perturbation is moderately strong. Results obtained in the rotated electronic basis are found to be consistently more accurate than those from the unrotated basis. These benchmark calculations also allow us to demonstrate the advantage of treating the population fluctuations instead of the populations as the relevant variables, as only the former lead to reliable results at long time. Thus, the THLE appears to provide a viable alternative to established methods--such as Ehrenfest dynamics or surface hopping--for the treatment of nonadiabatic effects in electron transfer simulations.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.2991294