Mathematical issues in a fully constrained formulation of the Einstein equations
Bonazzola, Gourgoulhon, Grandclément, and Novak [Phys. Rev. D 70, 104007 (2004)PRVDAQ0556-282110.1103/PhysRevD.70.104007] proposed a new formulation for 3+1 numerical relativity. Einstein equations result, according to that formalism, in a coupled elliptic-hyperbolic system. We have carried out a pr...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2008-04, Vol.77 (8), Article 084007 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bonazzola, Gourgoulhon, Grandclément, and Novak [Phys. Rev. D 70, 104007 (2004)PRVDAQ0556-282110.1103/PhysRevD.70.104007] proposed a new formulation for 3+1 numerical relativity. Einstein equations result, according to that formalism, in a coupled elliptic-hyperbolic system. We have carried out a preliminary analysis of the mathematical structure of that system, in particular, focusing on the equations governing the evolution for the deviation of a conformal metric from a flat fiducial one. The choice of a Dirac gauge for the spatial coordinates guarantees the mathematical characterization of that system as a (strongly) hyperbolic system of conservation laws. In the presence of boundaries, this characterization also depends on the boundary conditions for the shift vector in the elliptic subsystem. This interplay between the hyperbolic and elliptic parts of the complete evolution system is used to assess the prescription of inner boundary conditions for the hyperbolic part when using an excision approach to black hole space-time evolutions. |
---|---|
ISSN: | 1550-7998 2470-0010 0556-2821 1550-2368 2470-0029 1089-4918 |
DOI: | 10.1103/PhysRevD.77.084007 |