Self-oscillations and critical fluctuations

An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental and theoretical physics 2009-02, Vol.108 (2), p.349-355
Hauptverfasser: Vaganova, N. I., Rumanov, É. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 2
container_start_page 349
container_title Journal of experimental and theoretical physics
container_volume 108
creator Vaganova, N. I.
Rumanov, É. N.
description An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.). The system has not only stationary states, but also periodic oscillatory ones. When parameters change so that the oscillatory instability threshold passes through the cuspidal point, the continuous spectrum of fluctuations transforms into the discrete spectrum of periodic oscillations. The dynamics associated with this transformation are examined.
doi_str_mv 10.1134/S1063776109020174
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21246940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1063776109020174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4301978458c62b2a2b0a904583ac2e1aabf1010ec4a55d37a9236cd61cf6cacd3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvBU8SnUmSdPmKItfsOBh9Rym01S71FaS7MF_b0u9CZ7mDe-94c0T4hLhBlHp2x2CUWVpECxIwFIfidWMc1OAPZ6xUfnMn4qzGPcAUEmwK3G9832bj5G7vqfUjUPMaGgyDl3qmPqs7Q-cDgtzLk5a6qO_-J1r8fZw_7p5yrcvj8-bu23OCk3KtQK0ZaWLio2sJckayMK0KmLpkahuERA8ayqKRpVkpTLcGOTWMHGj1uJquTvG1LkpWvL8weMweE5OotTGaphUuKg4jDEG37qv0H1S-HYIbu7E_elk8sjFEyft8O6D24-HMEzP_GP6AaNQYd4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-oscillations and critical fluctuations</title><source>Springer Nature - Complete Springer Journals</source><creator>Vaganova, N. I. ; Rumanov, É. N.</creator><creatorcontrib>Vaganova, N. I. ; Rumanov, É. N.</creatorcontrib><description>An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.). The system has not only stationary states, but also periodic oscillatory ones. When parameters change so that the oscillatory instability threshold passes through the cuspidal point, the continuous spectrum of fluctuations transforms into the discrete spectrum of periodic oscillations. The dynamics associated with this transformation are examined.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776109020174</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CRYSTAL GROWTH ; Electronic Properties of Solids ; Elementary Particles ; FLUCTUATIONS ; INSTABILITY ; OSCILLATIONS ; Particle and Nuclear Physics ; PERIODICITY ; PHASE TRANSFORMATIONS ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Solid State Physics ; SYMMETRY BREAKING</subject><ispartof>Journal of experimental and theoretical physics, 2009-02, Vol.108 (2), p.349-355</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4301978458c62b2a2b0a904583ac2e1aabf1010ec4a55d37a9236cd61cf6cacd3</citedby><cites>FETCH-LOGICAL-c316t-4301978458c62b2a2b0a904583ac2e1aabf1010ec4a55d37a9236cd61cf6cacd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776109020174$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776109020174$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21246940$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaganova, N. I.</creatorcontrib><creatorcontrib>Rumanov, É. N.</creatorcontrib><title>Self-oscillations and critical fluctuations</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.). The system has not only stationary states, but also periodic oscillatory ones. When parameters change so that the oscillatory instability threshold passes through the cuspidal point, the continuous spectrum of fluctuations transforms into the discrete spectrum of periodic oscillations. The dynamics associated with this transformation are examined.</description><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CRYSTAL GROWTH</subject><subject>Electronic Properties of Solids</subject><subject>Elementary Particles</subject><subject>FLUCTUATIONS</subject><subject>INSTABILITY</subject><subject>OSCILLATIONS</subject><subject>Particle and Nuclear Physics</subject><subject>PERIODICITY</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Solid State Physics</subject><subject>SYMMETRY BREAKING</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvBU8SnUmSdPmKItfsOBh9Rym01S71FaS7MF_b0u9CZ7mDe-94c0T4hLhBlHp2x2CUWVpECxIwFIfidWMc1OAPZ6xUfnMn4qzGPcAUEmwK3G9832bj5G7vqfUjUPMaGgyDl3qmPqs7Q-cDgtzLk5a6qO_-J1r8fZw_7p5yrcvj8-bu23OCk3KtQK0ZaWLio2sJckayMK0KmLpkahuERA8ayqKRpVkpTLcGOTWMHGj1uJquTvG1LkpWvL8weMweE5OotTGaphUuKg4jDEG37qv0H1S-HYIbu7E_elk8sjFEyft8O6D24-HMEzP_GP6AaNQYd4</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Vaganova, N. I.</creator><creator>Rumanov, É. N.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090201</creationdate><title>Self-oscillations and critical fluctuations</title><author>Vaganova, N. I. ; Rumanov, É. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4301978458c62b2a2b0a904583ac2e1aabf1010ec4a55d37a9236cd61cf6cacd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CRYSTAL GROWTH</topic><topic>Electronic Properties of Solids</topic><topic>Elementary Particles</topic><topic>FLUCTUATIONS</topic><topic>INSTABILITY</topic><topic>OSCILLATIONS</topic><topic>Particle and Nuclear Physics</topic><topic>PERIODICITY</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Solid State Physics</topic><topic>SYMMETRY BREAKING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaganova, N. I.</creatorcontrib><creatorcontrib>Rumanov, É. N.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaganova, N. I.</au><au>Rumanov, É. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-oscillations and critical fluctuations</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>108</volume><issue>2</issue><spage>349</spage><epage>355</epage><pages>349-355</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.). The system has not only stationary states, but also periodic oscillatory ones. When parameters change so that the oscillatory instability threshold passes through the cuspidal point, the continuous spectrum of fluctuations transforms into the discrete spectrum of periodic oscillations. The dynamics associated with this transformation are examined.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1063776109020174</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7761
ispartof Journal of experimental and theoretical physics, 2009-02, Vol.108 (2), p.349-355
issn 1063-7761
1090-6509
language eng
recordid cdi_osti_scitechconnect_21246940
source Springer Nature - Complete Springer Journals
subjects Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CRYSTAL GROWTH
Electronic Properties of Solids
Elementary Particles
FLUCTUATIONS
INSTABILITY
OSCILLATIONS
Particle and Nuclear Physics
PERIODICITY
PHASE TRANSFORMATIONS
Physics
Physics and Astronomy
Quantum Field Theory
Relativity Theory
Solid State Physics
SYMMETRY BREAKING
title Self-oscillations and critical fluctuations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-oscillations%20and%20critical%20fluctuations&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Vaganova,%20N.%20I.&rft.date=2009-02-01&rft.volume=108&rft.issue=2&rft.spage=349&rft.epage=355&rft.pages=349-355&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776109020174&rft_dat=%3Ccrossref_osti_%3E10_1134_S1063776109020174%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true