Self-oscillations and critical fluctuations
An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.)...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2009-02, Vol.108 (2), p.349-355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 2 |
container_start_page | 349 |
container_title | Journal of experimental and theoretical physics |
container_volume | 108 |
creator | Vaganova, N. I. Rumanov, É. N. |
description | An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.). The system has not only stationary states, but also periodic oscillatory ones. When parameters change so that the oscillatory instability threshold passes through the cuspidal point, the continuous spectrum of fluctuations transforms into the discrete spectrum of periodic oscillations. The dynamics associated with this transformation are examined. |
doi_str_mv | 10.1134/S1063776109020174 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21246940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1063776109020174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4301978458c62b2a2b0a904583ac2e1aabf1010ec4a55d37a9236cd61cf6cacd3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvBU8SnUmSdPmKItfsOBh9Rym01S71FaS7MF_b0u9CZ7mDe-94c0T4hLhBlHp2x2CUWVpECxIwFIfidWMc1OAPZ6xUfnMn4qzGPcAUEmwK3G9832bj5G7vqfUjUPMaGgyDl3qmPqs7Q-cDgtzLk5a6qO_-J1r8fZw_7p5yrcvj8-bu23OCk3KtQK0ZaWLio2sJckayMK0KmLpkahuERA8ayqKRpVkpTLcGOTWMHGj1uJquTvG1LkpWvL8weMweE5OotTGaphUuKg4jDEG37qv0H1S-HYIbu7E_elk8sjFEyft8O6D24-HMEzP_GP6AaNQYd4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-oscillations and critical fluctuations</title><source>Springer Nature - Complete Springer Journals</source><creator>Vaganova, N. I. ; Rumanov, É. N.</creator><creatorcontrib>Vaganova, N. I. ; Rumanov, É. N.</creatorcontrib><description>An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.). The system has not only stationary states, but also periodic oscillatory ones. When parameters change so that the oscillatory instability threshold passes through the cuspidal point, the continuous spectrum of fluctuations transforms into the discrete spectrum of periodic oscillations. The dynamics associated with this transformation are examined.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776109020174</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CRYSTAL GROWTH ; Electronic Properties of Solids ; Elementary Particles ; FLUCTUATIONS ; INSTABILITY ; OSCILLATIONS ; Particle and Nuclear Physics ; PERIODICITY ; PHASE TRANSFORMATIONS ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Solid State Physics ; SYMMETRY BREAKING</subject><ispartof>Journal of experimental and theoretical physics, 2009-02, Vol.108 (2), p.349-355</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4301978458c62b2a2b0a904583ac2e1aabf1010ec4a55d37a9236cd61cf6cacd3</citedby><cites>FETCH-LOGICAL-c316t-4301978458c62b2a2b0a904583ac2e1aabf1010ec4a55d37a9236cd61cf6cacd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776109020174$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776109020174$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21246940$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaganova, N. I.</creatorcontrib><creatorcontrib>Rumanov, É. N.</creatorcontrib><title>Self-oscillations and critical fluctuations</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.). The system has not only stationary states, but also periodic oscillatory ones. When parameters change so that the oscillatory instability threshold passes through the cuspidal point, the continuous spectrum of fluctuations transforms into the discrete spectrum of periodic oscillations. The dynamics associated with this transformation are examined.</description><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CRYSTAL GROWTH</subject><subject>Electronic Properties of Solids</subject><subject>Elementary Particles</subject><subject>FLUCTUATIONS</subject><subject>INSTABILITY</subject><subject>OSCILLATIONS</subject><subject>Particle and Nuclear Physics</subject><subject>PERIODICITY</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Solid State Physics</subject><subject>SYMMETRY BREAKING</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvBU8SnUmSdPmKItfsOBh9Rym01S71FaS7MF_b0u9CZ7mDe-94c0T4hLhBlHp2x2CUWVpECxIwFIfidWMc1OAPZ6xUfnMn4qzGPcAUEmwK3G9832bj5G7vqfUjUPMaGgyDl3qmPqs7Q-cDgtzLk5a6qO_-J1r8fZw_7p5yrcvj8-bu23OCk3KtQK0ZaWLio2sJckayMK0KmLpkahuERA8ayqKRpVkpTLcGOTWMHGj1uJquTvG1LkpWvL8weMweE5OotTGaphUuKg4jDEG37qv0H1S-HYIbu7E_elk8sjFEyft8O6D24-HMEzP_GP6AaNQYd4</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Vaganova, N. I.</creator><creator>Rumanov, É. N.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090201</creationdate><title>Self-oscillations and critical fluctuations</title><author>Vaganova, N. I. ; Rumanov, É. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4301978458c62b2a2b0a904583ac2e1aabf1010ec4a55d37a9236cd61cf6cacd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CRYSTAL GROWTH</topic><topic>Electronic Properties of Solids</topic><topic>Elementary Particles</topic><topic>FLUCTUATIONS</topic><topic>INSTABILITY</topic><topic>OSCILLATIONS</topic><topic>Particle and Nuclear Physics</topic><topic>PERIODICITY</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Solid State Physics</topic><topic>SYMMETRY BREAKING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaganova, N. I.</creatorcontrib><creatorcontrib>Rumanov, É. N.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaganova, N. I.</au><au>Rumanov, É. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-oscillations and critical fluctuations</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>108</volume><issue>2</issue><spage>349</spage><epage>355</epage><pages>349-355</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.). The system has not only stationary states, but also periodic oscillatory ones. When parameters change so that the oscillatory instability threshold passes through the cuspidal point, the continuous spectrum of fluctuations transforms into the discrete spectrum of periodic oscillations. The dynamics associated with this transformation are examined.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1063776109020174</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7761 |
ispartof | Journal of experimental and theoretical physics, 2009-02, Vol.108 (2), p.349-355 |
issn | 1063-7761 1090-6509 |
language | eng |
recordid | cdi_osti_scitechconnect_21246940 |
source | Springer Nature - Complete Springer Journals |
subjects | Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CRYSTAL GROWTH Electronic Properties of Solids Elementary Particles FLUCTUATIONS INSTABILITY OSCILLATIONS Particle and Nuclear Physics PERIODICITY PHASE TRANSFORMATIONS Physics Physics and Astronomy Quantum Field Theory Relativity Theory Solid State Physics SYMMETRY BREAKING |
title | Self-oscillations and critical fluctuations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-oscillations%20and%20critical%20fluctuations&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Vaganova,%20N.%20I.&rft.date=2009-02-01&rft.volume=108&rft.issue=2&rft.spage=349&rft.epage=355&rft.pages=349-355&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776109020174&rft_dat=%3Ccrossref_osti_%3E10_1134_S1063776109020174%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |