Self-oscillations and critical fluctuations
An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.)...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2009-02, Vol.108 (2), p.349-355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An active system is analyzed whose parameter space contains a bistable region of stationary states bounded by a cuspidal point. This point is somewhat analogous to the critical point of a non-symmetry-breaking phase transition (in terms of high low-frequency susceptibility, fluctuation growth, etc.). The system has not only stationary states, but also periodic oscillatory ones. When parameters change so that the oscillatory instability threshold passes through the cuspidal point, the continuous spectrum of fluctuations transforms into the discrete spectrum of periodic oscillations. The dynamics associated with this transformation are examined. |
---|---|
ISSN: | 1063-7761 1090-6509 |
DOI: | 10.1134/S1063776109020174 |