Interaction of the burning spherical droplets in oxygen-enriched turbulent environment

Three-dimensional numerical studies on the interaction of vaporizing and burning droplets were conducted to understand the burning characteristics of multiple droplets in a turbulent environment. The burning droplets characteristics, such as lifetime, surface temperature, vaporization, reaction, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2009-01, Vol.156 (1), p.14-24
Hauptverfasser: Cho, Chong Pyo, Kim, Ho Young, Yoon, Sam S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-dimensional numerical studies on the interaction of vaporizing and burning droplets were conducted to understand the burning characteristics of multiple droplets in a turbulent environment. The burning droplets characteristics, such as lifetime, surface temperature, vaporization, reaction, and burning rate were examined for various oxygen mole-fractions and geometrical arrangements of droplets. Results from a single droplet combustion test were first verified and validated against existing experimental data. Results indicate that turbulent intensity has a moderate effect on droplet burning rate, but not as prominent an effect as the oxygen mole-fraction. At high oxygen mole-fractions, droplet lifetime was short due to enhanced burning. It is shown that evaporation processes of multiple droplets are notably affected by the inter-space distance between droplets both in streamwise and spanwise directions. The burning rate as a function of oxygen mole-fraction and inter-space distance is determined and can be used as a guideline for future studies on spray combustion.
ISSN:0010-2180
1556-2921
DOI:10.1016/j.combustflame.2008.10.026