Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps

Efficient numerical methods for analyzing photonic crystals (PhCs) can be developed using the Dirichlet-to-Neumann (DtN) maps of the unit cells. The DtN map is an operator that takes the wave field on the boundary of a unit cell to its normal derivative. In frequency domain calculations for band str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2008-04, Vol.227 (9), p.4617-4629
Hauptverfasser: Yuan, Jianhua, Lu, Ya Yan, Antoine, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient numerical methods for analyzing photonic crystals (PhCs) can be developed using the Dirichlet-to-Neumann (DtN) maps of the unit cells. The DtN map is an operator that takes the wave field on the boundary of a unit cell to its normal derivative. In frequency domain calculations for band structures and transmission spectra of finite PhCs, the DtN maps allow us to reduce the computation to the boundaries of the unit cells. For two-dimensional (2D) PhCs with unit cells containing circular cylinders, the DtN maps can be constructed from analytic solutions (the cylindrical waves). In this paper, we develop a boundary integral equation method for computing DtN maps of general unit cells containing cylinders with arbitrary cross sections. The DtN map method is used to analyze band structures for 2D PhCs with elliptic and other cylinders.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2008.01.014