Vertical Profiles Of {sup 226}Ra, {sup 232}Th And {sup 40}K Activities In Rocks From The Irati Formation Of The Parana Sedimentary Basin, Southern Brazil
Naturally occurring radioisotopes are present in different concentrations in sedimentary rocks, reflecting the origin of the sediments, the depositional environment, and more recent events such as weathering and erosion. Using a high-resolution {gamma}-ray spectrometry methodology, sedimentary rocks...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2008-08, Vol.1034 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Naturally occurring radioisotopes are present in different concentrations in sedimentary rocks, reflecting the origin of the sediments, the depositional environment, and more recent events such as weathering and erosion. Using a high-resolution {gamma}-ray spectrometry methodology, sedimentary rocks were measured to assess the concentration activities of the natural radioisotopes. The surveyed rocks are from the Irati formation in the Parana sedimentary basin, which are exposed by an abandoned, open-pit limestone mine, in the city of Sapopema, southern Brazil. The exposed vertical profile is 5 m, and its stratigraphy is represented by an alternation of limestone and bituminous shale (layers being a few decimeters thick), and some millimeter rhythm layers with limestone and bituminous shale laminas. Eleven samples were collected along this profile, each of them dried in the open air during 48 hours, sieved through 4 mm mesh and sealed in cylindrical recipients. Measurements were accomplished using a 66% relative efficiency HPGE detector connected to a standard gamma ray spectrometry electronic chain. The detector efficiency in the range of 60 to 1800 keV was carried out with the certified IAEA-385 sediment sample. The Lower Limit of Detection (LLD) to the system is 2.40 Bq{center_dot}kg{sup -1} for {sup 226}Ra, 1.84 Bq{center_dot}kg{sup -1} for {sup 232}Th and 4.20 Bq{center_dot}kg{sup -1} for {sup 40}K. Activity concentrations were determined for {sup 226}Ra (from 16.22 to 151.55 Bq{center_dot}kg{sup -1}), {sup 232}Th (from 2.93 to 56.12 Bq{center_dot}kg{sup -1}) and {sup 40}K (from 38.45 to 644.63 Bq{center_dot}kg{sup -1}). The layers enriched with organic matter presented the higher values of activity. The measured concentrations of the natural radioisotopes were lower for limestone samples (average values and respective deviations were 22.81{+-}0.22 Bq{center_dot}kg{sup -1} for {sup 226}Ra, 4.21{+-}0.07 Bq{center_dot}kg{sup -1} for {sup 232}Th, and 50.11{+-}0.82 Bq{center_dot}kg{sup -1} for {sup 40}K). Higher concentrations were measured for the bituminous shale samples (average values and respective deviations were 108.10{+-}12.17 Bq{center_dot}kg{sup -1} for {sup 226}Ra, 43.69{+-}0.30 Bq{center_dot}kg{sup -1} for {sup 232}Th, and 465.82{+-}3.99 Bq{center_dot}kg{sup -1} for {sup 40}K). The concentrations were intermediate for the rhythmite samples (average values and respective deviations were 50.69{+-}1.09 Bq{center_dot}kg{sup -1} for {sup 226}Ra, 7.6 |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.2991215 |