Universal geometric entanglement close to quantum phase transitions

Under successive renormalization group transformations applied to a quantum state |Psi of finite correlation length xi, there is typically a loss of entanglement after each iteration. How good it is then to replace |Psi by a product state at every step of the process? In this Letter we give a quanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2008-04, Vol.100 (13), p.130502-130502, Article 130502
1. Verfasser: Orus, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under successive renormalization group transformations applied to a quantum state |Psi of finite correlation length xi, there is typically a loss of entanglement after each iteration. How good it is then to replace |Psi by a product state at every step of the process? In this Letter we give a quantitative answer to this question by providing first analytical and general proofs that, for translationally invariant quantum systems in one spatial dimension, the global geometric entanglement per region of size L>>xi diverges with the correlation length as (c/12)log(xi/epsilon) close to a quantum critical point with central charge c, where is a cutoff at short distances. Moreover, the situation at criticality is also discussed and an upper bound on the critical global geometric entanglement is provided in terms of a logarithmic function of L.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.100.130502