Growth and Developmental Effects of Coal Combustion Residues on Southern Leopard Frog (Rana sphenocephala) Tadpoles Exposed throughout Metamorphosis

The effects of aquatic deposition of coal combustion residues (CCRs) on amphibian life histories have been the focus of many recent studies. In summer 2005, we raised larval Southern Leopard Frogs, Rana sphenocephala, on either sand or CCR substrate (approximately 1 cm deep within plastic bins) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Copeia 2008-09, Vol.2008 (3), p.499-503
Hauptverfasser: Peterson, John D, Peterson, Vikki A, Mendonça, Mary T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of aquatic deposition of coal combustion residues (CCRs) on amphibian life histories have been the focus of many recent studies. In summer 2005, we raised larval Southern Leopard Frogs, Rana sphenocephala, on either sand or CCR substrate (approximately 1 cm deep within plastic bins) and documented effects of sediment type on oral disc condition, as well as time to, mass at, and total body length at key developmental stages, including metamorphosis (Gosner stages [GS] 37, 42, and 46). We found no significant difference in mortality between the two treatments and mortality was relatively low (eight of 48 in the control group and four of 48 in the CCR group). Ninety percent of exposed tadpoles displayed oral disc abnormalities, while no control individuals displayed abnormalities. Tadpoles raised on CCR-contaminated sediment had decreased developmental rates and weighed significantly less at all developmental stages, on average, when compared to controls. The CCR treatment group was also significantly shorter in length than controls at the completion of metamorphosis (GS 46). Collectively, these findings are the most severe sub-lethal effects noted for any amphibian exposed to CCRs to date. More research is needed to understand how these long term effects may contribute to the dynamics of local amphibian populations.
ISSN:0045-8511
2766-1512
1938-5110
2766-1520
DOI:10.1643/CG-07-047