Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption
Instantaneous support shrinking is studied for a doubly non-linear degenerate parabolic equation in the case of slow diffusion when, in general, the Cauchy initial data are Radon measures. For a non-negative solution, a necessary and sufficient condition for instantaneous support shrinking is obtain...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2008-04, Vol.199 (4) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Instantaneous support shrinking is studied for a doubly non-linear degenerate parabolic equation in the case of slow diffusion when, in general, the Cauchy initial data are Radon measures. For a non-negative solution, a necessary and sufficient condition for instantaneous support shrinking is obtained in terms of the local behaviour of the mass of the initial data. In the same terms, estimates are obtained for the size of the support, that are sharp with respect to order. Bibliography: 24 titles. |
---|---|
ISSN: | 1064-5616 1468-4802 |
DOI: | 10.1070/SM2008V199N04ABEH003931;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA) |