Renormalization group functions for two-dimensional phase transitions: To the problem of singular contributions
According to the available publications, the field theoretical renormalization group approach in the two-dimensional case gives the critical exponents that differ from the known exact values. This property is associated with the existence of nonanalytic contributions in the renormalization group fun...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2007-08, Vol.105 (2), p.360-370 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | According to the available publications, the field theoretical renormalization group approach in the two-dimensional case gives the critical exponents that differ from the known exact values. This property is associated with the existence of nonanalytic contributions in the renormalization group functions. The situation is analyzed in this work using a new algorithm for summing divergent series that makes it possible to determine the dependence of the results for the critical exponents on the expansion coefficients for the renormalization group functions. It has been shown that the exact values of all the exponents can be obtained with a reasonable form of the coefficient functions. These functions have small nonmonotonic sections or inflections, which are poorly reproduced in natural interpolations. It is not necessary to assume the existence of singular contributions in the renormalization group functions. |
---|---|
ISSN: | 1063-7761 1090-6509 |
DOI: | 10.1134/S1063776107080080 |