The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells

The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-d-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2008-03, Vol.367 (2), p.487-490
Hauptverfasser: Watanabe, Kanako, Kanno, Takeshi, Oshima, Tadayuki, Miwa, Hiroto, Tashiro, Chikara, Nishizaki, Tomoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-d-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G1 phase of cell cycling and decreased the proportion in the S/G2 phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G1 phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2007.12.167