Determination of Halogens in Coal after Digestion Using the Microwave-Induced Combustion Technique

The microwave-induced combustion (MIC) technique was applied for coal digestion and further determination of bromide, chloride, fluoride, and iodide by ion chromatography (IC). Samples (up to 500 mg) were combusted at 2 MPa of oxygen. Combustion was complete in less than 50 s, and analytes were abso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2008-03, Vol.80 (6), p.1865-1870
Hauptverfasser: Flores, Érico M. M, Mesko, Márcia F, Moraes, Diogo P, Pereira, Juliana S. F, Mello, Paola A, Barin, Juliano S, Knapp, Günter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microwave-induced combustion (MIC) technique was applied for coal digestion and further determination of bromide, chloride, fluoride, and iodide by ion chromatography (IC). Samples (up to 500 mg) were combusted at 2 MPa of oxygen. Combustion was complete in less than 50 s, and analytes were absorbed in water or (NH4)2CO3 solution. A reflux step was applied to improve analyte absorption. Accuracy was evaluated for Br, Cl, and F using certified reference coal and spiked samples for I. For Br, Cl, and F, the agreement was between 96 and 103% using 50 mmol L-1 (NH4)2CO3 as the absorbing solution and 5 min of reflux. With the use of the same conditions, the recoveries for I were better than 97%. Br, Cl, and I were also determined in MIC digests by inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, and F was determined by an ion-selective electrode with agreement better than 95% to the values obtained using IC. Temperature during combustion was higher than 1350 °C, and the residual carbon content was lower than 1%. With the use of the MIC technique, up to eight samples could be processed simultaneously, and a single absorbing solution was suitable for all analytes and determination techniques (limit of detection by IC was better than 3 μg g-1 for all halogens).
ISSN:0003-2700
1520-6882
DOI:10.1021/ac8000836