On the moduli space of semilocal strings and lumps
We study Bogomol'nyi-Prasad-Sommerfield (BPS) non-Abelian semilocal vortices in U(N{sub C}) gauge theory with N{sub F} flavors, N{sub F}>N{sub C}, in the Higgs phase. The moduli space for an arbitrary winding number is described using the moduli matrix formalism. We find a relation between t...
Gespeichert in:
Veröffentlicht in: | Physical review. D, Particles and fields Particles and fields, 2007-11, Vol.76 (10), Article 105002 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Bogomol'nyi-Prasad-Sommerfield (BPS) non-Abelian semilocal vortices in U(N{sub C}) gauge theory with N{sub F} flavors, N{sub F}>N{sub C}, in the Higgs phase. The moduli space for an arbitrary winding number is described using the moduli matrix formalism. We find a relation between the moduli spaces of the semilocal vortices in Seiberg-like dual pairs of theories, U(N{sub C}) and U(N{sub F}-N{sub C}). They are two alternative regularizations of a parent non-Hausdorff space, which tend to the same moduli space of sigma model lumps in the infinite gauge coupling limits. We examine the normalizability of the zero-modes and find the somewhat surprising phenomenon that the number of normalizable zero-modes, dynamical fields in the effective action, depends on the point of the moduli space we are considering. We find, in the lump limit, an effective action on the vortex world sheet, which we compare to that found by Shifman and Yung. |
---|---|
ISSN: | 1550-7998 0556-2821 1550-2368 1089-4918 |
DOI: | 10.1103/PhysRevD.76.105002 |