Infinite-dimensional representations of the rotation group and Dirac monopole problem

Within the context of infinite-dimensional representations of the rotation group, the Dirac monopole problem is studied in detail. Irreducible infinite-dimensional representations, which have been realized in the indefinite metric Hilbert space, are given by linear unbounded operators in infinite-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2008-01, Vol.49 (1), p.013505-013505-26
Hauptverfasser: Nesterov, Alexander I., Aceves de la Cruz, Fermín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 013505-26
container_issue 1
container_start_page 013505
container_title Journal of mathematical physics
container_volume 49
creator Nesterov, Alexander I.
Aceves de la Cruz, Fermín
description Within the context of infinite-dimensional representations of the rotation group, the Dirac monopole problem is studied in detail. Irreducible infinite-dimensional representations, which have been realized in the indefinite metric Hilbert space, are given by linear unbounded operators in infinite-dimensional topological spaces, supplied with a weak topology and associated weak convergence. We argue that an arbitrary magnetic charge is allowed, and the Dirac quantization condition can be replaced by a generalized quantization rule yielding a new quantum number, the so-called topological spin, which is related to the weight of the Dirac string.
doi_str_mv 10.1063/1.2830430
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21013809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1425871231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-d95dc1ac48a49a2498e89c6024c14d3aae30788cac49802910cef5a014c3b08b3</originalsourceid><addsrcrecordid>eNp9kUlLBDEQhYMoOC4H_0FQPCi0VpbpqVwEGVcQvOg5ZNJpbelJ2qRH8N8b7XEB0boUFF896r0iZIfBEYNSHLMjjgKkgBUyYoCqmJRjXCUjAM4LLhHXyUZKTwCMoZQjcn_t68Y3vSuqZu58aoI3LY2uiy4535s-DxINNe0fHY1hGNCHGBYdNb6iZ000ls6DD11oHe1imLVuvkXWatMmt73sm-T-4vxuelXc3F5eT09vCiuF6otKjSvLjJVopDJcKnSobAlcWiYrYYwTMEG0mVAIXDGwrh4bYNKKGeBMbJK9QTekvtHJZh_20Qbvne01Z8AEgsrU7kDl654XLvX6KSxi9pkyMy4ZIvIMHQyQjSGl6GrdxWZu4qtmoN-j1Uwvo83s_lLQJGvaOhpvm_S1wAEmucrMnQzc-2Ufyf0t-vkH_eMPWeDwL4GXEL-XdVfV_8G_LbwBD9Kpeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215618882</pqid></control><display><type>article</type><title>Infinite-dimensional representations of the rotation group and Dirac monopole problem</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Nesterov, Alexander I. ; Aceves de la Cruz, Fermín</creator><creatorcontrib>Nesterov, Alexander I. ; Aceves de la Cruz, Fermín</creatorcontrib><description>Within the context of infinite-dimensional representations of the rotation group, the Dirac monopole problem is studied in detail. Irreducible infinite-dimensional representations, which have been realized in the indefinite metric Hilbert space, are given by linear unbounded operators in infinite-dimensional topological spaces, supplied with a weak topology and associated weak convergence. We argue that an arbitrary magnetic charge is allowed, and the Dirac quantization condition can be replaced by a generalized quantization rule yielding a new quantum number, the so-called topological spin, which is related to the weight of the Dirac string.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2830430</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONVERGENCE ; EIGENFUNCTIONS ; EIGENVALUES ; Euclidean space ; Exact sciences and technology ; GROUP THEORY ; HILBERT SPACE ; MAGNETIC MONOPOLES ; Mathematical methods in physics ; Mathematical problems ; Mathematics ; Physics ; QUANTIZATION ; Quantum theory ; ROTATION ; SCHROEDINGER EQUATION ; Sciences and techniques of general use ; SPIN ; TOPOLOGY</subject><ispartof>Journal of mathematical physics, 2008-01, Vol.49 (1), p.013505-013505-26</ispartof><rights>American Institute of Physics</rights><rights>2008 American Institute of Physics</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Institute of Physics Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-d95dc1ac48a49a2498e89c6024c14d3aae30788cac49802910cef5a014c3b08b3</citedby><cites>FETCH-LOGICAL-c439t-d95dc1ac48a49a2498e89c6024c14d3aae30788cac49802910cef5a014c3b08b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2830430$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1558,4509,27922,27923,76154,76160</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20077776$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21013809$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nesterov, Alexander I.</creatorcontrib><creatorcontrib>Aceves de la Cruz, Fermín</creatorcontrib><title>Infinite-dimensional representations of the rotation group and Dirac monopole problem</title><title>Journal of mathematical physics</title><description>Within the context of infinite-dimensional representations of the rotation group, the Dirac monopole problem is studied in detail. Irreducible infinite-dimensional representations, which have been realized in the indefinite metric Hilbert space, are given by linear unbounded operators in infinite-dimensional topological spaces, supplied with a weak topology and associated weak convergence. We argue that an arbitrary magnetic charge is allowed, and the Dirac quantization condition can be replaced by a generalized quantization rule yielding a new quantum number, the so-called topological spin, which is related to the weight of the Dirac string.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONVERGENCE</subject><subject>EIGENFUNCTIONS</subject><subject>EIGENVALUES</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>GROUP THEORY</subject><subject>HILBERT SPACE</subject><subject>MAGNETIC MONOPOLES</subject><subject>Mathematical methods in physics</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Physics</subject><subject>QUANTIZATION</subject><subject>Quantum theory</subject><subject>ROTATION</subject><subject>SCHROEDINGER EQUATION</subject><subject>Sciences and techniques of general use</subject><subject>SPIN</subject><subject>TOPOLOGY</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kUlLBDEQhYMoOC4H_0FQPCi0VpbpqVwEGVcQvOg5ZNJpbelJ2qRH8N8b7XEB0boUFF896r0iZIfBEYNSHLMjjgKkgBUyYoCqmJRjXCUjAM4LLhHXyUZKTwCMoZQjcn_t68Y3vSuqZu58aoI3LY2uiy4535s-DxINNe0fHY1hGNCHGBYdNb6iZ000ls6DD11oHe1imLVuvkXWatMmt73sm-T-4vxuelXc3F5eT09vCiuF6otKjSvLjJVopDJcKnSobAlcWiYrYYwTMEG0mVAIXDGwrh4bYNKKGeBMbJK9QTekvtHJZh_20Qbvne01Z8AEgsrU7kDl654XLvX6KSxi9pkyMy4ZIvIMHQyQjSGl6GrdxWZu4qtmoN-j1Uwvo83s_lLQJGvaOhpvm_S1wAEmucrMnQzc-2Ufyf0t-vkH_eMPWeDwL4GXEL-XdVfV_8G_LbwBD9Kpeg</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Nesterov, Alexander I.</creator><creator>Aceves de la Cruz, Fermín</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20080101</creationdate><title>Infinite-dimensional representations of the rotation group and Dirac monopole problem</title><author>Nesterov, Alexander I. ; Aceves de la Cruz, Fermín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-d95dc1ac48a49a2498e89c6024c14d3aae30788cac49802910cef5a014c3b08b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONVERGENCE</topic><topic>EIGENFUNCTIONS</topic><topic>EIGENVALUES</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>GROUP THEORY</topic><topic>HILBERT SPACE</topic><topic>MAGNETIC MONOPOLES</topic><topic>Mathematical methods in physics</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Physics</topic><topic>QUANTIZATION</topic><topic>Quantum theory</topic><topic>ROTATION</topic><topic>SCHROEDINGER EQUATION</topic><topic>Sciences and techniques of general use</topic><topic>SPIN</topic><topic>TOPOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nesterov, Alexander I.</creatorcontrib><creatorcontrib>Aceves de la Cruz, Fermín</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nesterov, Alexander I.</au><au>Aceves de la Cruz, Fermín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite-dimensional representations of the rotation group and Dirac monopole problem</atitle><jtitle>Journal of mathematical physics</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>49</volume><issue>1</issue><spage>013505</spage><epage>013505-26</epage><pages>013505-013505-26</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Within the context of infinite-dimensional representations of the rotation group, the Dirac monopole problem is studied in detail. Irreducible infinite-dimensional representations, which have been realized in the indefinite metric Hilbert space, are given by linear unbounded operators in infinite-dimensional topological spaces, supplied with a weak topology and associated weak convergence. We argue that an arbitrary magnetic charge is allowed, and the Dirac quantization condition can be replaced by a generalized quantization rule yielding a new quantum number, the so-called topological spin, which is related to the weight of the Dirac string.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2830430</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2008-01, Vol.49 (1), p.013505-013505-26
issn 0022-2488
1089-7658
language eng
recordid cdi_osti_scitechconnect_21013809
source AIP Journals Complete; AIP Digital Archive
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONVERGENCE
EIGENFUNCTIONS
EIGENVALUES
Euclidean space
Exact sciences and technology
GROUP THEORY
HILBERT SPACE
MAGNETIC MONOPOLES
Mathematical methods in physics
Mathematical problems
Mathematics
Physics
QUANTIZATION
Quantum theory
ROTATION
SCHROEDINGER EQUATION
Sciences and techniques of general use
SPIN
TOPOLOGY
title Infinite-dimensional representations of the rotation group and Dirac monopole problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite-dimensional%20representations%20of%20the%20rotation%20group%20and%20Dirac%20monopole%20problem&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Nesterov,%20Alexander%20I.&rft.date=2008-01-01&rft.volume=49&rft.issue=1&rft.spage=013505&rft.epage=013505-26&rft.pages=013505-013505-26&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2830430&rft_dat=%3Cproquest_osti_%3E1425871231%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215618882&rft_id=info:pmid/&rfr_iscdi=true