Infinite-dimensional representations of the rotation group and Dirac monopole problem

Within the context of infinite-dimensional representations of the rotation group, the Dirac monopole problem is studied in detail. Irreducible infinite-dimensional representations, which have been realized in the indefinite metric Hilbert space, are given by linear unbounded operators in infinite-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2008-01, Vol.49 (1), p.013505-013505-26
Hauptverfasser: Nesterov, Alexander I., Aceves de la Cruz, Fermín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Within the context of infinite-dimensional representations of the rotation group, the Dirac monopole problem is studied in detail. Irreducible infinite-dimensional representations, which have been realized in the indefinite metric Hilbert space, are given by linear unbounded operators in infinite-dimensional topological spaces, supplied with a weak topology and associated weak convergence. We argue that an arbitrary magnetic charge is allowed, and the Dirac quantization condition can be replaced by a generalized quantization rule yielding a new quantum number, the so-called topological spin, which is related to the weight of the Dirac string.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.2830430