The breaking of quantum double symmetries by defect condensation

In this paper, we study the phenomenon of Hopf or more specifically quantum double symmetry breaking. We devise a criterion for this type of symmetry breaking which is more general than the one originally proposed in F.A. Bais, B.J. Schroers, J.K. Slingerland [Broken quantum symmetry and confinement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2007-03, Vol.322 (3), p.552-598
Hauptverfasser: Bais, F.A., Mathy, C.J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the phenomenon of Hopf or more specifically quantum double symmetry breaking. We devise a criterion for this type of symmetry breaking which is more general than the one originally proposed in F.A. Bais, B.J. Schroers, J.K. Slingerland [Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 (2002) 181601]; Hopf symmetry breaking and confinement in (2+1)-dimensional gauge theory, JHEP 05 (2003) 068], and therefore extends the number of possible breaking patterns that can be described consistently. We start by recalling why the extended symmetry notion of quantum double algebras is an optimal tool when analyzing a wide variety of two-dimensional physical systems including quantum fluids, crystals and liquid crystals. The power of this approach stems from the fact that one may characterize both ordinary and topological modes as representations of a single (generally nonabelian) Hopf symmetry. In principle a full classification of defect mediated as well as ordinary symmetry breaking patterns and subsequent confinement phenomena can be given. The formalism applies equally well to systems exhibiting global, local, internal and/or external (i.e. spatial) symmetries. The subtle differences in interpretation for the various situations are pointed out. We show that the Hopf symmetry breaking formalism reproduces the known results for ordinary (electric) condensates, and we derive formulae for defect (magnetic) condensates which also involve the phenomenon of symmetry restoration. These results are applied in two papers which will be published in parallel [C.J.M. Mathy, F.A. Bais, Nematic phases and the breaking of double symmetries, arXiv:cond-mat/0602109, 2006; F.A. Bais, C.J.M. Mathy, Defect mediated melting and the breaking of quantum double symmetries, arXiv:cond-mat/0602101, 2006].
ISSN:0003-4916
1096-035X
DOI:10.1016/j.aop.2006.05.010