Accuracy limits and window corrections for photon Doppler velocimetry

Symmetric, plate-impact experiments were performed to validate photon Doppler velocimetry (PDV) with established shock wave diagnostics. Impact velocity measurements using shorting pins demonstrated that the velocity accuracy of PDV can be 0.1 % or better. Shock velocities and refractive indices wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2007-01, Vol.101 (1), p.013523-013523-10
Hauptverfasser: Jensen, B. J., Holtkamp, D. B., Rigg, P. A., Dolan, D. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Symmetric, plate-impact experiments were performed to validate photon Doppler velocimetry (PDV) with established shock wave diagnostics. Impact velocity measurements using shorting pins demonstrated that the velocity accuracy of PDV can be 0.1 % or better. Shock velocities and refractive indices were also measured with PDV (at 1550 nm) and velocity interferometer system for any reflector (VISAR) (at 532 nm) to obtain window corrections for single crystal LiF (100), c -cut sapphire, and z -cut quartz. Time-dependent, free-surface velocity histories for shocked LiF(100) provide a direct comparison between PDV and VISAR diagnostics and illustrate the benefits and shortcomings of the new diagnostic. Further implications of these results are presented.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.2407290