Path-Integral Monte Carlo and the Squeezed Trapped Bose-Einstein Gas

Bose-Einstein condensation has been experimentally found to take place in finite trapped systems when one of the confining frequencies is increased until the gas becomes effectively two-dimensional (2D). We confirm the plausibility of this result by performing path-integral Monte Carlo (PIMC) simula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fernandez, Juan Pablo, Mullin, William J
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bose-Einstein condensation has been experimentally found to take place in finite trapped systems when one of the confining frequencies is increased until the gas becomes effectively two-dimensional (2D). We confirm the plausibility of this result by performing path-integral Monte Carlo (PIMC) simulations of trapped Bose gases of increasing anisotropy and comparing them to the predictions of finite-temperature many-body theory. PIMC simulations provide an essentially exact description of these systems; they yield the density profile directly and provide two different estimates for the condensate fraction. For the ideal gas, we find that the PIMC column density of the squeezed gas corresponds quite accurately to that of the exact analytic solution and, moreover, is well mimicked by the density of a 2D gas at the same temperature; the two estimates for the condensate fraction bracket the exact result. For the interacting case, we find 2D Hartree-Fock solutions whose density profiles coincide quite well with the PIMC column densities and whose predictions for the condensate fraction are again bracketed by the PIMC estimates.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.2354595