Jacobi -functions and discrete Fourier transforms

Properties of the Jacobi {theta}{sub 3}-function and its derivatives under discrete Fourier transforms are investigated, and several interesting results are obtained. The role of modulo N equivalence classes in the theory of {theta}-functions is stressed. An important conjecture is studied.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2006-06, Vol.47 (6), p.063507.1-063507.10
1. Verfasser: RUZZI, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Properties of the Jacobi {theta}{sub 3}-function and its derivatives under discrete Fourier transforms are investigated, and several interesting results are obtained. The role of modulo N equivalence classes in the theory of {theta}-functions is stressed. An important conjecture is studied.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.2209770