Identification of genetic networks involved in the cell injury accompanying endoplasmic reticulum stress induced by bisphenol A in testicular Sertoli cells

To identify detailed mechanisms by which bisphenol A (BPA), an endocrine-disrupting chemical, induces cell injury in mouse testicular Sertoli TTE3 cells, we performed genome-wide microarray and computational gene network analyses. BPA (200 μM) significantly decreased cell viability and simultaneousl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2006-07, Vol.345 (3), p.1044-1050
Hauptverfasser: Tabuchi, Yoshiaki, Takasaki, Ichiro, Kondo, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To identify detailed mechanisms by which bisphenol A (BPA), an endocrine-disrupting chemical, induces cell injury in mouse testicular Sertoli TTE3 cells, we performed genome-wide microarray and computational gene network analyses. BPA (200 μM) significantly decreased cell viability and simultaneously induced an increase in mRNA levels of HSPA5 and DDIT3, endoplasmic reticulum (ER) stress marker genes. Of the 22,690 probe sets analyzed, BPA down-regulated 661 probe sets and up-regulated 604 probe sets by >2.0-fold. Hierarchical cluster analysis demonstrated nine gene clusters. In decreased gene clusters, two significant genetic networks were associated with cell growth and proliferation and the cell cycle. In increased gene clusters, two significant genetic networks including many basic-region leucine zipper transcription factors were associated with cell death and DNA replication, recombination, and repair. The present results will provide additional novel insights into the detailed molecular mechanisms of cell injury accompanying ER stress induced by BPA in Sertoli cells.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2006.04.177