In vitro toxicity of silica nanoparticles in human lung cancer cells

The cytotoxicity of 15-nm and 46-nm silica nanoparticles was investigated by using crystalline silica (Min-U-Sil 5) as a positive control in cultured human bronchoalveolar carcinoma-derived cells. Exposure to 15-nm or 46-nm SiO 2 nanoparticles for 48 h at dosage levels between 10 and 100 μg/ml decre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology and applied pharmacology 2006-12, Vol.217 (3), p.252-259
Hauptverfasser: Lin, Weisheng, Huang, Yue-wern, Zhou, Xiao-Dong, Ma, Yinfa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cytotoxicity of 15-nm and 46-nm silica nanoparticles was investigated by using crystalline silica (Min-U-Sil 5) as a positive control in cultured human bronchoalveolar carcinoma-derived cells. Exposure to 15-nm or 46-nm SiO 2 nanoparticles for 48 h at dosage levels between 10 and 100 μg/ml decreased cell viability in a dose-dependent manner. Both SiO 2 nanoparticles were more cytotoxic than Min-U-Sil 5; however, the cytotoxicities of 15-nm and 46-nm silica nanoparticles were not significantly different. The 15-nm SiO 2 nanoparticles were used to determine time-dependent cytotoxicity and oxidative stress responses. Cell viability decreased significantly as a function of both nanoparticle dosage (10–100 μg/ml) and exposure time (24 h, 48 h, and 72 h). Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species (ROS), glutathione, malondialdehyde, and lactate dehydrogenase, were quantitatively assessed. Exposure to SiO 2 nanoparticles increased ROS levels and reduced glutathione levels. The increased production of malondialdehyde and lactate dehydrogenase release from the cells indicated lipid peroxidation and membrane damage. In summary, exposure to SiO 2 nanoparticles results in a dose-dependent cytotoxicity in cultural human bronchoalveolar carcinoma-derived cells that is closely correlated to increased oxidative stress.
ISSN:0041-008X
1096-0333
DOI:10.1016/j.taap.2006.10.004