Protective effect of esculentoside A on radiation-induced dermatitis and fibrosis

Purpose: To investigate the effect of esculentoside A (EsA) on radiation-induced cutaneous and fibrovascular toxicity and its possible molecular mechanisms, both in vivo and in vitro. Methods and Materials: Mice received drug intervention 18 hours before 30 Gy to the right hind leg. Alterations in s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics biology, physics, 2006-07, Vol.65 (3), p.882-889
Hauptverfasser: Xiao, Zhenyu, Su, Ying, Yang, Shanmin, Yin, Liangjie, Wang, Wei, Yi, Yanghua, Fenton, Bruce M., Zhang, Lurong, Okunieff, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: To investigate the effect of esculentoside A (EsA) on radiation-induced cutaneous and fibrovascular toxicity and its possible molecular mechanisms, both in vivo and in vitro. Methods and Materials: Mice received drug intervention 18 hours before 30 Gy to the right hind leg. Alterations in several cytokines expressed in skin tissue 2 days after irradiation were determined by ELISA. Early skin toxicity was evaluated 3 to 4 weeks after irradiation by skin scoring, and both tissue contraction and expression of TGF-β1 were determined for soft-tissue fibrosis 3 months after irradiation. In vitro, the effect of EsA on radiation-induced nitric oxide (NO) and cytokine production in different cell types was measured by application of 2, 4, and 8 Gy. Results: In vivo, EsA reduced levels of IL-1α, MCP-1, VEGF, and TGF-β1 in cutaneous tissue and reduced soft-tissue toxicity. In vitro, EsA inhibited the IL-1α ordinarily produced after 4 Gy in A431 cells. In Raw264.7 cells, EsA reduced levels of IL-1α, IL-1β, and NO production costimulated by radiation and lipopolysaccharide (LPS). In L-929 cells, EsA inhibited VEGF, TNF, and MCP-1 production at 2, 4, and 8 Gy. Conclusions: Esculentoside A protects soft tissues against radiation toxicity through inhibiting the production of several proinflammatory cytokines and inflammatory mediators in epithelial cells, macrophages, fibroblasts, and skin tissue.
ISSN:0360-3016
1879-355X
DOI:10.1016/j.ijrobp.2006.01.031