Three-dimensional structure of the {gamma}-secretase complex

{gamma}-Secretase belongs to an atypical class of aspartic proteases that hydrolyzes peptide bonds within the transmembrane domain of substrates, including amyloid-{beta} precursor protein and Notch. {gamma}-Secretase is comprised of presenilin, nicastrin, APH-1, and PEN-2 which form a large multime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2006-05, Vol.343 (2)
Hauptverfasser: Ogura, Toshihiko, PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho Kawaguchi, Saitama, Mio, Kazuhiro, Hayashi, Ikuo, Miyashita, Hiroyuki, Iwastubo, Takeshi, Fukuda, Rie, Kopan, Raphael, Kodama, Tatsuhiko, Hamakubo, Takao, Tomita, Taisuke, Sato, Chikara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:{gamma}-Secretase belongs to an atypical class of aspartic proteases that hydrolyzes peptide bonds within the transmembrane domain of substrates, including amyloid-{beta} precursor protein and Notch. {gamma}-Secretase is comprised of presenilin, nicastrin, APH-1, and PEN-2 which form a large multimeric membrane protein complex, the three-dimensional structure of which is unknown. To gain insight into the structure of this complex enzyme, we purified functional {gamma}-secretase complex reconstituted in Sf9 cells and analyzed it using negative stain electron microscopy and 3D reconstruction techniques. Analysis of 2341 negatively stained particle images resulted in the three-dimensional representation of {gamma}-secretase at a resolution of 48 A. The structure occupies a volume of 560 x 320 x 240 A and resembles a flat heart comprised of two oppositely faced, dimpled domains. A low density space containing multiple pores resides between the domains. Some of the dimples in the putative transmembrane region may house the catalytic site. The large dimensions are consistent with the observation that {gamma}-secretase activity resides within a high molecular weight complex.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2006.02.158