Improvement of luminous efficacy in plasma display panels by a counter-type electrode configuration with a large gap
The discharge characteristics of plasma display panel with coplanar and counter-type electrode configurations are compared using the numerical modeling and experiment with respect to real and macrocells, respectively. Numerical analysis shows that the ultraviolet (UV) efficiency and driving voltage...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2006-06, Vol.99 (11), p.113301-113301-8 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The discharge characteristics of plasma display panel with coplanar and counter-type electrode configurations are compared using the numerical modeling and experiment with respect to real and macrocells, respectively. Numerical analysis shows that the ultraviolet (UV) efficiency and driving voltage of counter type at a gap distance of
230
μ
m
are located at similar levels to those of coplanar type at a gap distance of
60
μ
m
. The UV efficiency for counter type is enhanced with the rise of xenon fraction and gap distance, between which the large gap operation is more advantageous to high UV efficiency. The measured temporal evolution of infrared emission reveals that the cathode layer plays an important role in forming the discharge current after the gas breakdown. It is found from the time-averaged visible and infrared emissions for the counter type that as the gap distance becomes larger, the positive column region increases but the sheath regime remains almost unchanged. On the other hand, the variation of gap distance gives a little influence on the average discharge current at the same applied voltage. The UV efficiency is thus greatly improved with the gap distance. When the gap becomes double, the UV efficiency is improved by 75%, which is well agreed with the results predicted in the numerical modeling. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.2193165 |