Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer
Purpose: The Calypso 4D Localization System is being developed to provide accurate, precise, objective, and continuous target localization during radiotherapy. This study involves the first human use of the system, to evaluate the localization accuracy of this technique compared with radiographic lo...
Gespeichert in:
Veröffentlicht in: | International journal of radiation oncology, biology, physics biology, physics, 2006-06, Vol.65 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose: The Calypso 4D Localization System is being developed to provide accurate, precise, objective, and continuous target localization during radiotherapy. This study involves the first human use of the system, to evaluate the localization accuracy of this technique compared with radiographic localization and to assess its ability to obtain real-time prostate-motion information. Methods and Materials: Three transponders were implanted in each of 20 patients. Eleven eligible patients of the 20 patients participated in a study arm that compared radiographic triangulated transponder locations to electromagnetically recorded transponder locations. Transponders were tracked for 8-min periods. Results: The implantations were all successful, with no major complications. Intertransponder distances were largely stable. Comparison of the patient localization on the basis of transponder locations as per the Calypso system with the radiographic transponder localization showed an average ({+-}SD) 3D difference of 1.5 {+-} 0.9 mm. Upon tracking during 8 min, 2 of the 11 patients showed significant organ motion (>1 cm), with some motion lasting longer that 1 min. Conclusion: Calypso transponders can be used as magnetic intraprostatic fiducials. Clinical evaluation of this novel 4D nonionizing electromagnetic localization system with transponders indicates a comparable localization accuracy to isocenter (within 2 mm) compared with X-ray localiza0010ti. |
---|---|
ISSN: | 0360-3016 1879-355X |
DOI: | 10.1016/J.IJROBP.2006.0 |