Full characterization of an intense pulsed hyperthermal molecular beam

A molecular beam technique for generating an intense pulsed hyperthermal molecular beam (pulsed HTMB) was developed. The beam source consists of a pulse valve, a cooling-water bottle that protects the pulse valve from heat transfer of the high temperature nozzle, and a nozzle with a heater. The poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2005-05, Vol.76 (5), p.055108-055108-5
Hauptverfasser: Watanabe, D., Che, D.-C., Fukuyama, T., Hashinokuchi, M., Teraoka, Y., Kasai, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A molecular beam technique for generating an intense pulsed hyperthermal molecular beam (pulsed HTMB) was developed. The beam source consists of a pulse valve, a cooling-water bottle that protects the pulse valve from heat transfer of the high temperature nozzle, and a nozzle with a heater. The point was a pulse-valve operation with the high temperature nozzle which was 30-mm long and was made of pyrolytic boron nitride. The pulsed HTMB of HCl was practically generated. The total beam intensity of the pulsed HTMB was measured by a quadrupole mass spectrometer. It was determined that the beam intensity of the pulsed HTMB was two orders of magnitude larger than that obtained in continuous-HTMB conditions. The pulsed HTMB of HCl was fully characterized by means of ( 2 + 1 ) resonance-enhanced multiphoton ionization and ion time-of-flight techniques. We found that the velocity distribution of the pulsed HTMB was well expressed as supersonic molecular beams. At the highest nozzle temperature of 1400 K, the mean translational energy value of HCl molecules was 1.38 eV. The translational energy distribution of the pulsed HTMB covered a range from 0.8 to 1.6 eV. The fraction of higher translational energy molecules greater than 1.0 eV was 80% in the 1400 K nozzle. The rotational state distributions of HCl molecules in the pulsed HTMB were expressed as the Boltzmann distribution. While the rotational temperature decreased by an adiabatic expansion of the beam, the vibrational temperature, which was determined by the ratio of the ground-state population to the excited state one, almost equaled the nozzle temperature.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.1898204