Detection and characterization of multipartite entanglement in optical lattices

We investigate the detection and characterization of entanglement based on the quantum network introduced in Phys. Rev. Lett. 93, 110501 (2004) for different experimental scenarios. We first give a detailed discussion of the ideal scheme where no errors are present and full spatial resolution is ava...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-10, Vol.72 (4), Article 042335
Hauptverfasser: Palmer, R. N., Moura Alves, C., Jaksch, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the detection and characterization of entanglement based on the quantum network introduced in Phys. Rev. Lett. 93, 110501 (2004) for different experimental scenarios. We first give a detailed discussion of the ideal scheme where no errors are present and full spatial resolution is available. Then we analyze the implementation of the network in an optical lattice. We find that even without any spatial resolution entanglement can be detected and characterized in various kinds of states including cluster states and macroscopic superposition states. We also study the effects of detection errors and imperfect dynamics on the detection network. For our scheme to be practical these errors have to be on the order of one over the number of investigated lattice sites. Finally, we consider the case of limited spatial resolution and conclude that significant improvement in entanglement detection and characterization compared to having no spatial resolution is only possible if single lattice sites can be resolved.
ISSN:1050-2947
1094-1622
DOI:10.1103/PhysRevA.72.042335