Atomic CP-violating polarizability
Searches for CP-violating effects in atoms and molecules provide important constrains on competing extensions to the standard model of elementary particles. In particular, CP violation in an atom leads to the CP-odd (T,P-odd) polarizability {beta}{sup CP}: a magnetic moment {mu}{sup CP} is induced b...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-07, Vol.72 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Searches for CP-violating effects in atoms and molecules provide important constrains on competing extensions to the standard model of elementary particles. In particular, CP violation in an atom leads to the CP-odd (T,P-odd) polarizability {beta}{sup CP}: a magnetic moment {mu}{sup CP} is induced by an electric field E{sub 0} applied to an atom, {mu}{sup CP}={beta}{sup CP}E{sub 0}. We estimate the CP-violating polarizability for rare-gas (diamagnetic) atoms He through Rn. We relate {beta}{sup CP} to the permanent electric dipole moment (EDM) of the electron and to the scalar constant of the CP-odd electron-nucleus interaction. The analysis is carried out using the third-order perturbation theory and the Dirac-Hartree-Fock formalism. We find that, as a function of nuclear charge Z, {beta}{sup CP} scales steeply as Z{sup 5}R(Z), where slowly varying R(Z) is a relativistic enhancement factor. Finally, we evaluate the feasibility of setting a limit on electron EDM by measuring CP-violating magnetization of liquid Xe. We find that such an experiment could provide competitive bounds on electron EDM only if the present level of experimental sensitivity to ultraweak magnetic fields [Kominis et al., Nature 422, 596 (2003)] is improved by several orders of magnitude. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.72.012101 |