Entanglement in the Bogoliubov vacuum
We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work on one- and two-dimensional lattices and study the entanglement between two groups of lattice sites as a function...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-06, Vol.71 (6), Article 063605 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work on one- and two-dimensional lattices and study the entanglement between two groups of lattice sites as a function of the geometry of the configuration and the strength of the interactions. As our measure of entanglement we use the logarithmic negativity, supplemented by an algorithmic check [G. Giedke et al., Phys. Rev. Lett. 87, 167904 (2001)] for bound entanglement where appropriate. The short-range entanglement is found to grow approximately linearly with the group sizes and to be favored by strong interactions. Conversely, long-range entanglement is favored by relatively weak interactions. No examples of bound entanglement are found. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.71.063605 |