Backward Raman amplification in a partially ionized gas
Compressing laser pulses to extremely high intensities through backward Raman amplification might be accomplished in a plasma medium. While the theory is relatively straightforward for homogeneous fully ionized plasma, a number of important effects enter when the plasma is not fully ionized. In part...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2005-09, Vol.72 (3 Pt 2), p.036401-036401, Article 036401 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Compressing laser pulses to extremely high intensities through backward Raman amplification might be accomplished in a plasma medium. While the theory is relatively straightforward for homogeneous fully ionized plasma, a number of important effects enter when the plasma is not fully ionized. In particular, when a mixture of gases is employed to accomplish the coupling, there can be several thresholds for incremental ionization. The refraction of both the pump and the seed is then strongly affected by the plasma ionization. Moreover, in the case of Raman backscattering in partially ionized plasma, the degree of plasma ionization is particularly sensitive to the counterpropagating geometry. This idea is examined in light of data for a recent experiment on a Raman amplifier. |
---|---|
ISSN: | 1539-3755 1063-651X 1550-2376 1095-3787 |
DOI: | 10.1103/PhysRevE.72.036401 |