Thomson scattering and ponderomotive intermodulation within standing laser beat waves in plasma

Electrons in a standing electromagnetic wave--an optical lattice--tend to oscillate due to the quiver and ponderomotive potentials. For sufficiently intense laser fields (Ilamda2 approximately < or = 5 x 10(17) W cm(-2) microm2) and in plasmas with sufficiently low electron densities (n approxima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2005-08, Vol.72 (2 Pt 2), p.026501-026501, Article 026501
Hauptverfasser: Sepke, Scott, Lau, Y Y, Holloway, James Paul, Umstadter, Donald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrons in a standing electromagnetic wave--an optical lattice--tend to oscillate due to the quiver and ponderomotive potentials. For sufficiently intense laser fields (Ilamda2 approximately < or = 5 x 10(17) W cm(-2) microm2) and in plasmas with sufficiently low electron densities (n approximately < or = 10(18) cm(-3)), these oscillations can occur faster than the plasma can respond. This paper shows that these oscillations result in Thomson scattering of light at both the laser and ponderomotive bounce frequencies and their harmonics as well as at mixtures of these frequencies. We term this mixing ponderomotive intermodulation. Here, the case of counterpropagating laser beams creating a one-dimensional (1D) optical lattice is analyzed. The near-equilibrium electron orbits and subsequent Thomson scattering patterns are computed in the single-particle limit. Scaling laws are derived to quantify the range of validity of this approach. Finally, collective plasma and laser focusing effects are included by using particle-in-cell (PIC) techniques. This effect resulting in light-frequency conversion has applications both as an infrared light source and as a means to diagnose high laser intensities inside dense plasmas.
ISSN:1539-3755
1063-651X
1550-2376
1095-3787
DOI:10.1103/PhysRevE.72.026501