Laurent series expansion of a class of massive scalar one-loop integrals to O ( ε 2 )

We use dimensional regularization to calculate the O({epsilon}{sup 2}) expansion of all scalar one-loop one-, two-, three-, and four-point integrals that are needed in the calculation of hadronic heavy quark production. The Laurent series up to O({epsilon}{sup 2}) is needed as input to that part of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles and fields Particles and fields, 2005-03, Vol.71 (5), Article 054028
Hauptverfasser: Körner, J. G., Merebashvili, Z., Rogal, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use dimensional regularization to calculate the O({epsilon}{sup 2}) expansion of all scalar one-loop one-, two-, three-, and four-point integrals that are needed in the calculation of hadronic heavy quark production. The Laurent series up to O({epsilon}{sup 2}) is needed as input to that part of the next-to-next-to-leading order corrections to heavy flavor production at hadron colliders where the one-loop integrals appear in the loop-by-loop contributions. The four-point integrals are the most complicated. The O({epsilon}{sup 2}) expansion of the three- and four-point integrals contains in general polylogarithms up to Li{sub 4} and functions related to multiple polylogarithms of maximal weight and depth four.
ISSN:1550-7998
0556-2821
1550-2368
1089-4918
DOI:10.1103/PhysRevD.71.054028