Self-action of laser radiation in cluster plasma
We have analytically and numerically studied the self-action dynamics of laser radiation in a plasma with ionized gas clusters. Based on the simplified model of a cluster in the form of a superposition of two charged (electron and ion) bunches, we analyze the nonlinearity mechanisms. We refine the e...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2005-10, Vol.101 (4), p.728-740 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have analytically and numerically studied the self-action dynamics of laser radiation in a plasma with ionized gas clusters. Based on the simplified model of a cluster in the form of a superposition of two charged (electron and ion) bunches, we analyze the nonlinearity mechanisms. We refine the electrodynamic cluster model by the molecular dynamics method. The polarization behavior of the plasma bunch in the main part of the laser pulse is shown to be the same as that in the simplified model. We investigate the self-action dynamics of laser radiation under conditions when the nonlinearity of the stratified medium is determined by the anharmonicity of the electron motion in the cluster, while the group velocity dispersion is determined by both the background plasma and the ionized clusters. Since the characteristic field for the electron nonlinearity depends strongly on the cluster size, the peculiarities of the self-action dynamics result from plasma bunch expansion. The spatiotemporal evolution of the wave field is shown to be accompanied by pulse self-compression near the trailing edge. |
---|---|
ISSN: | 1063-7761 1090-6509 |
DOI: | 10.1134/1.2131942 |