Optimizing boron junctions through point defect and stress engineering using carbon and germanium co-implants
We report the fabrication of p + ∕ n junctions using Ge + , C + , and B + co-implantation and a spike anneal. The best junction exhibits a depth of 26 nm , vertical abruptness of 3 nm ∕ decade , and sheet resistance of 520 Ohm ∕ square . The junction location is defined by where the boron concentrat...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2005-08, Vol.87 (5), p.051908-051908-3 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the fabrication of
p
+
∕
n
junctions using
Ge
+
,
C
+
, and
B
+
co-implantation and a spike anneal. The best junction exhibits a depth of
26
nm
, vertical abruptness of
3
nm
∕
decade
, and sheet resistance of
520
Ohm
∕
square
. The junction location is defined by where the boron concentration drops to
10
18
cm
−
3
. These junctions are close to the International Technology Roadmap specifications for the
65
nm
technology node and are achieved by careful engineering of amorphization, stresses, and point defects. Advanced simulation of boron diffusion is used to understand and optimize the process window. The simulations show that the optimum process completely suppresses the transient-enhanced diffusion of boron and the formation of boron-interstitial clusters. This increases the boron solubility to 20% above the equilibrium solid-state solubility. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.2001163 |