Low-temperature growth of high-quality lead zirconate titanate thin films by 28 GHz microwave irradiation

Pb ( Zr x Ti 1 − x ) O 3 (PZT) thin films were coated on Pt/Ti/SiO2/Si substrates by a sol-gel method and then crystallized by 28 GHz microwave irradiation. The elevated temperature generated by microwave irradiation to obtain the perovskite phase is only 480 °C, which is significantly lower than th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2005-05, Vol.86 (21)
Hauptverfasser: Wang, Z. J., Kokawa, H., Takizawa, H., Ichiki, M., Maeda, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pb ( Zr x Ti 1 − x ) O 3 (PZT) thin films were coated on Pt/Ti/SiO2/Si substrates by a sol-gel method and then crystallized by 28 GHz microwave irradiation. The elevated temperature generated by microwave irradiation to obtain the perovskite phase is only 480 °C, which is significantly lower than that of conventional thermal processing. X-ray diffraction analysis indicated that the PZT films crystallized well in the perovskite phase. A scanning electron microscopy image showed that the film has a spherulite grain structure and most of the grains are approximately 2 μm in size. The average values of the remanent polarization, coercive field, dielectric constant, and loss of the PZT films are 40μC∕cm2, 50 kV/cm, 1100, and 004, respectively. It is clear that microwave irradiation is effective for obtaining well-crystallized PZT films with good properties at low temperatures.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.1935748